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Universality of critical dynamics on a complex network
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We investigate the role of the spectral dimension ds in determining the universality of phase transitions on a
complex network. Due to its structural heterogeneity, a complex network generally acts as a disordered system.
Specifically, we study the synchronization and entrainment transitions in the nonequilibrium dynamics of the
Kuramoto model and the phase transition of the equilibrium dynamics of the classical XY model, thereby
covering a broad spectrum from nonlinear dynamics to statistical and condensed matter physics. Using linear
theory, we obtain a general relationship between the dynamics occurring on the network and the underlying net-
work properties. This yields the lower critical spectral dimension of the phase synchronization and entrainment
transitions in the Kuramoto model as ds = 4 and ds = 2, respectively, whereas for the phase transition in the XY
model it is ds = 2. To test our theoretical hypotheses, we employ a network where any two nodes on the network
are connected with a probability proportional to a power law of the distance between the nodes; this realizes any
desired ds ∈ [1,∞). Our detailed numerical study agrees well with the prediction of linear theory for the phase
synchronization transition in the Kuramoto model. However, it shows a clear entrainment transition in the Ku-
ramoto model and phase transition in the XY model at ds � 3, not ds = 2 as predicted by linear theory. Our study
indicates that network disorder in the region 2 � ds � 3 introduces strong finite-size fluctuations, which makes
it extremely difficult to probe the existence of the ordered phase as predicted, affecting the dynamics profoundly.
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I. INTRODUCTION

Phase transitions and critical phenomena are a much-
studied research topic in statistical and condensed matter
physics. By now, it is well known how large-scale geom-
etry affects the universal behavior of phase transitions and
critical phenomena. Most of the research, both in and out of
equilibrium, focuses on regular Euclidean lattices. Renormal-
ization group theory helps us understand this phenomenon
for statistical systems on such a regular lattice. It predicts
that the Euclidean dimension is the only relevant geometrical
parameter in determining universality classes.

However, the situation is not so obvious when we have a
system that breaks the translational invariance, such as disor-
dered lattices, fractals, amorphous materials, or, in general,
graphs or networks. Although a vast amount of literature
has been dedicated to studying critical phenomena on dis-
ordered lattices in condensed matter and statistical physics,
the same on a general graph or a complex network appears
new to this list, drawing attention only recently. A complex
network, formed by a set of nodes and links between them,
also acts as a disordered system, where the disorder arises
from structural heterogeneity: the degree distribution and its
various moments [1,2]. Based on the structural properties or
inhomogeneity of the network, the critical dynamics on such
a network may yield nontrivial and intriguing results.

Critical dynamics on complex networks finds many ap-
plications in diverse fields: epidemic spreading [3], brain
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dynamics [4], urban traffic on roads [5], and many others [6].
A pertinent question is: Which parameter determines the
universality classes for critical systems on a general network?
It is believed that the spectral dimension, more specifically,
the “average spectral dimension” (ds) of a network, is equiv-
alent to the Euclidean dimension for lattices. The spectral
dimension characterizes the scaling of the low-lying eigen-
values of the associated Laplacian of the network [7,8]. If
the first, smallest non-zero (Fiedler) eigenvalue vanishes in
the thermodynamic limit, the network is said to have a finite
spectral dimension [9,10]. On the other hand, if it remains
finite, the network is said to develop a spectral gap, implying
infinite spectral dimension.

We ask a fundamental question: Given two networks with
the same spectral dimension ds, does the dynamics on both
networks belong to the same universality class? Or, in other
words, is the spectral dimension the only relevant param-
eter of a network that determines the universality class of
the dynamics? This quest has been pursued in the field of
statistical physics for a long time; however, a unique answer
to it is still lacking. The relation between network geometry
and dynamics is far from trivial. There are a few studies that
generalize the analysis of lattices to networks. We must note
that a complex network is fundamentally very different from
a regular Euclidean lattice. For a network and a lattice with
the same finite ds, the eigenvectors of the network Laplacian
may not be delocalized over the network like the Fourier basis
on the Euclidean lattice. For a clean system (a lattice), all
eigenvectors are delocalized; however, for a disordered graph
(a complex network) of finite size, some states may appear lo-
calized, reflecting local configurations or degree distributions.
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This raises the fundamental question about the role of spectral
dimension in determining the universality of the dynamics.
Addressing this question is the key focus of our present work.

The nonlinearity in the dynamics and the heterogeneity in
a complex network make, in general, such a study analytically
formidable [6]. Even numerically, one major problem lies in
accessing networks of any spectral dimensions. To overcome
this, we have employed a network where we can tune its
spectral dimension continuously and thus have the freedom
to work in any dimension ds ∈ [1,∞) and test numerically
various hypotheses or theoretical predictions [11].

To study the role of spectral dimension in determining
the universality of the dynamics, we consider two fundamen-
tally different kinds of dynamics on such a network: One
is a nonequilibrium dynamics of a paradigmatic model of
nonlinear dynamics, namely, the Kuramoto model showing
spontaneous synchronization [12–15], and the other one is
an equilibrium one, namely, the dynamics of a classical XY
model, another paradigmatic model of statistical and con-
densed matter physics. First, we theoretically obtain the role
of ds on the phase and entrainment transition for the Kuramoto
dynamics and test the theoretical predictions numerically.
Next, we investigate the role of ds for the universality of
the phase transition of the classical XY model [16,17]. One
advantage of studying the Kuramoto model is that we can map
it to the dynamics of the classical XY model in a certain limit:
Making the natural frequencies of the oscillators identical,
then going to a comoving frame rotating at that identical
frequency, and applying Gaussian white noise to the sys-
tems [18,19]. This is equivalent to making the quenched disor-
der of the natural frequencies an annealed one (Gaussian white
noise). In this paper, we examine both cases on networks in
turn; more details will be provided in the subsequent section.

We show in this work for a given dynamics occur-
ring on the network, under linear approximation, how the
stationary-state fluctuations and phase correlations depend
on the underlying network properties, namely, the density
of eigenvalues of the network Laplacian and the stationary
distribution of the coefficients (corresponding to the variables
expressed in the eigenbasis of the Laplacian). In the context
of the Kuramoto model and the classical XY model, we ex-
plicitly obtain these quantities, which further help us estimate
the lower critical spectral dimension ds of the associated phase
transitions. Our main finding is that the linear theory predicts
the lower critical dimension for entrainment and synchroniza-
tion transition in the Kuramoto model as ds = 2, and ds = 4,
respectively, and for the phase transition in the XY model it
is ds = 2. Our detailed numerical investigation agrees well
with the theoretical prediction of synchronization transition
in the Kuramoto model. However, it does not yield a clear
signature of entrainment transition in the Kuramoto model and
phase transition in the XY model in 2 � ds � 3. This indicates
that the network heterogeneity in the form of bond disorder is
harmless at dimension ds > 3, whereas it plays a crucial role
in the region 2 � ds � 3: It introduces strong finite-size fluc-
tuations, which vanishes very slowly in the thermodynamic
limit. This, in turn, makes it extremely difficult to probe the
existence of the ordered phase as predicted [20].

For a similar line of work, we cite Ref. [21] in the context
of synchronization in the Kuramoto model at various spectral

dimensions. Our theoretical results for the Kuramoto model
match the prediction in Ref. [21], which validates our theory.
However, our work is different from that in three contexts:
First, we go beyond the Ref. [21] in that we have derived
the expressions of the observables on a general ground, under
the assumption that the dynamics (of interest) has a unique
stationary state on the network, while it was obtained in the
reference using an explicit solution of the deterministic Ku-
ramoto dynamics. Second, our method is general in that it
applies to both deterministic and stochastic dynamics on the
network so long as it has a unique stationary state. Third,
in Ref. [21], the numerical test was performed on a com-
plex network manifold that generates discrete d-dimensional
manifolds by gluing d-dimensional simplices along their (d −
1)-faces subsequently, whereas, in numerics, we tune spectral
dimension in our model continuously. Another work in the
similar line but for the second-order Kuramoto model on a
lattice can be found in Ref. [22].

In passing, we note that the heterogeneous degree distri-
bution makes the Kuramoto model under study a disordered
system, specifically in terms of bond disorder. This is very dif-
ferent from other disordered Kuramoto models studied in the
literature, where the disorder arises from independent random
positive and negative mean-field couplings, which add frustra-
tion to the system and can lead to glassy dynamics [23–25].

The paper is organized as follows: Sec. II describes the
graph/network we work on and defines our model of study
along with the main queries addressed in this work. In Sec. III,
we derive our theoretical predictions for the stability of the
ordered phase in terms of spectral dimension on a general
network under linear approximation, thereby predicting the
lower critical dimensions for the phase and entrainment tran-
sitions in the Kuramoto and XY models. Section IV defines
the observables to study numerically the associated transitions
of the Kuramoto and XY dynamics. In Sec. V, we provide
our numerical results on phase and entrainment transitions of
the Kuramoto dynamics, test our theoretical predictions, and
discuss the possible role of graph disorder on the dynamics,
while in Sec. VI we study the same for the XY dynamics.
The paper ends with conclusions in Sec. VII. Finally, the
Appendix provides a derivation of the quantities required to
compute fluctuations and correlation in the linear theory.

II. MODEL AND DYNAMICS

In this section, we first introduce the model, namely, the
one-dimensional (1D) long-range random ring (1DLRRR or
1DLR3) network [11]. The network is constructed as follows:
We first consider as a backbone a 1D linear lattice of N
sites with periodic boundary conditions, thus forming a ring.
Next, any two sites i and j ( �= i) (i, j = 0, 1, 2, · · · , N − 1)
on the lattice are connected by a link with a probability pi j =
1/|i − j|1+σ , where |i − j| = min(|i − j|, N − |i − j|), and
the parameter σ characterizes the scaling of the probability
pi j with distance. The network does not contain any self-
loops. The network is characterized by the adjacency matrix
A = {ai j}, with ai j = 1 or 0 depending on whether the nodes
i and j are connected or not, according to the link probabil-
ity. Furthermore, we consider the network to be undirected
and symmetric, i.e., aji = ai j . The parameter σ controls the
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network properties: in particular, the degree distribution. By
tuning the parameter σ , one could generate a sparse or dense
network, or a network of tightly connected local networks
with rare long-range links. For example, σ = −1 corresponds
to a network with all-to-all connections, whereas σ → ∞
corresponds to a 1D lattice with nearest-neighbor connections
only, and one can thus obtain a network with local and long-
range links by tuning σ between these two extreme limits. We
refer the reader to Ref. [11] for the basic network characteris-
tics, e.g., the degree distribution and its mean, variance, etc.,
of this model.

In contrast to the well-studied 1D lattice model with long-
range power-law decaying interactions [26], the present model
is a network (1D lattice with additional long-range links)
where the interaction strength is equal among all neighbors;
however, the connection probability decays as a power law.
The coupling probability gives rise to randomness that vi-
olates the translational invariance and also acts as a source
of quenched bond-disorder in the system. This model has
already been employed to investigate the critical properties
of long-range epidemics [27] and percolation [28]. Also,
critical dynamics of the XY model [29,30], epidemic spread-
ing [31], and self-avoiding walks [32] have been studied on a
two-dimensional lattice version of it. A generalization of the
present model is reminiscent of the Kleinberg model [33] of
network science, showing the emergence of the small-world
phenomenon [34], and was employed in the study of naviga-
tion problems [35–37].

The spectral properties of our 1DLR3 network are thor-
oughly investigated in Ref. [11]. By tuning the parameter σ

continuously, this model allows one to realize the whole range
of spectral dimension ds ∈ [1, ∞). This feature makes it a
suitable candidate to investigate the universal behavior for
critical models with both continuous and discrete symmetries.

To study the universality of the dynamics on such a net-
work, we first work with the paradigmatic model of nonlinear
dynamics, namely, the Kuramoto model, showing the sponta-
neous emergence of collective synchronization [12–15]. The
model comprises a collection of N interacting limit-cycle os-
cillators residing at nodes of the network and of distributed
natural frequencies. The phase θi(t ) ∈ [0, 2π ) of the ith oscil-
lator evolves in time as [12]

dθi

dt
= ωi + K

κi

N∑
j=1

ai j sin(θ j − θi ). (1)

Here, K � 0 denotes the strength of coupling between the
oscillators, ωi ∈ (−∞,∞) is the natural frequency of the ith
oscillator, ai j is the adjacency matrix for a given network
realization, and κi = ∑

j ai j is the degree of the ith node.
The scaling by κi of the second term on the right-hand side
ensures that this term is well behaved in the limit N → ∞ and,
moreover, to screen out the effect of having heterogeneous de-
gree distributions. The ω j’s are quenched-disordered random
variables distributed according to a common distribution G(ω)
with finite mean �0 and width � > 0. By choice of a suitable
frame of reference, the mean of the distribution �0 can be
set to zero without loss of generality. In our numerical sim-
ulations, the natural frequencies are drawn from a Gaussian
distribution with zero mean and unit variance.

Note that the dynamics (1) is deterministic and is, more-
over, intrinsically non-Hamiltonian. The latter fact is due to
the presence of two sources of quenched disorder: the de-
gree (κi) and the intrinsic frequency (ωi). Even without the
frequency term, the asymmetric term ai j/κi in the interaction
kernel cannot be derived from a potential flow, rendering the
dynamics non-Hamiltonian. Consequently, the dynamics (1)
always relaxes at long times to a nonequilibrium stationary
state.

Let us now briefly summarize the known results for the
stationary state of the dynamics (1) in various limits. For
σ � 0, the 1DLR3 network develops a finite spectral gap
indicating spectral dimension ds = ∞ [11,38]. For σ = −1,
ai j = 1 ∀i, j, the dynamics reduces to that of a mean-field, all-
to-all coupled model, originally introduced by Kuramoto [12].
Depending on the value of the coupling K , this model ex-
hibits two qualitatively different phases in the thermodynamic
limit: a low-K unsynchronized phase where the oscillators run
incoherently (a more precise definition will be given in the
following section) and a high-K synchronized phase where a
macroscopic number of oscillators or even all of them lock
their frequencies despite having different natural frequencies,
and run coherently. The dynamics (1) exhibits a supercritical
bifurcation between these two phases as one tunes K across
a critical value Kc [12,13,39]. By analogy with a statistical
system, we may associate the bifurcation behavior with a
continuous phase transition [39,40]. From now on, we use
“phase transition” instead of “bifurcation” throughout this
paper. One would expect a similar phase transition for σ � 0.
On the other hand, in the opposite limit σ → ∞, the dynamics
is equivalent to that on a 1D chain with a nearest-neighbor
interaction, which in the limit N → ∞ does not exhibit any
ordered phase at any K and hence no phase transition [13].

For σ > 0, the model has a finite spectral dimension: based
on the study in Ref. [11], one expects ds = 1 for σ � 2 and
ds = 2/σ for 0 < σ < 1/3, the same as on a fully connected
weighted graph [38]. However, in the range 1/3 � σ < 2, the
behavior deviates from that of a fully connected weighted
graph, and one needs to study the low-energy spectrum to
determine ds. In this context, we ask: What is the role of
ds in the synchronization dynamics of the Kuramoto model?
How does the network disorder affect the dynamics? Or is the
spectral dimension the only relevant parameter determining
the universality of the dynamics on such a disordered graph?
A thorough investigation to address these questions is one of
the primary goals of the present work. A recent study in this
direction can be found in Ref. [21], where the synchronization
dynamics of the Kuramoto model was studied on a complex
network manifold, which is different from ours.

As we will also investigate the role of ds for the uni-
versality of the phase transition of the classical XY model,
let us now summarize the known results for the XY model.
Similar to the Kuramoto model, it does not exhibit any
phase transition in the limit N → ∞ on a 1D lattice with
nearest-neighbor interactions, which corresponds to σ � 2
in our model. Note that on a 2D regular lattice, this model
undergoes the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition [41,42]. Following the Mermin-Wagner theorem,
the lower critical dimension for a phase transition is dl =
2 [43]. A generalization of the Mermin-Wagner theorem for
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graphs states that spontaneous breaking of continuous sym-
metry is not possible on a graph that is “recursive on average”,
i.e., on a graph with “average spectral dimension” ds � 2.
Instead, it is possible only on a graph that is “transient on av-
erage” (ds > 2) [16,17]. The XY model on the Watts-Strogatz
small-world network exhibits a mean-field type continuous
phase transition. A study of the XY model on complex net-
works with an annealed network approximation shows the
existence of a continuous phase transition with the critical
temperature being proportional to the second moment of the
degree distribution. This implies that the critical temperature
is finite only if the second moment is finite [6].

There have been several recent works analyzing the fate
of a BKT quasi-long-range ordered phase in a long-range
interacting system. The XY dynamics on a 2D long-range
interacting systems, which could be thought of as an annealed
version of our model in 2D, where the interaction decays as
∼|i − j|−(2+σ ), yields a rich phase diagram showing the ex-
istence of both conventional continuous and BKT transitions
in the region 7/4 < σ < 2, and belonging to the BKT uni-
versality class for σ > 2 [44]. Another recent study of the XY
dynamics on a 2D version of a variant of our model, where the
connection probability ∼|i − j|−(2+σ ), verifies the theoretical
prediction that the dynamics belongs to the BKT universality
class for σ � 2 and exhibits a continuous phase transition
for σ < 2 [29,30]. Also, a BKT transition is predicted in
the critical dynamics of the XY model on a 1D long-range
power-law interacting system for ds = 2 [45,46].

The fact that the underlying topology of the network plays
a crucial role in the critical dynamics and the advantage that
one can realize spectral dimensions ds lower than 2 in our
1DLR3 model motivate us to investigate the critical dynamics
of the model on a network with ds = 2. Investigating BKT on
such a graph with 1D backbone would be a good test of the
universality. Further, it would be interesting to see how the
topological excitations, in case a quasiordered phase exists,
are formed on such a network. This constitutes the second
part of our work, where we explore the dynamics of the XY
model on the 1DLR3 graph and test the theoretical prediction
for the dependence of the universal behavior of BKT and
conventional phase transitions on the spectral dimension.

III. LINEAR THEORY

In this section we first study the dynamics under linear
approximation on a general network: sin(θ j − θi ) ≈ (θ j −
θi ), ∀i, j. This corresponds to the case of a very strong K
value for the Kuramoto model, and very low temperature
for the XY model (see Sec. VI). The linearized equation, as
obtained from Eq. (1), now reads as

dθi

dt
= ωi − K

N∑
j=1

Li jθ j . (2)

Here Li j , defined as

Li j := δi j − ai j

κi
, i, j = 1, 2, 3, · · · , N, (3)

is the (i, j)th element of the associated network Laplacian
L [7,47]. Note that, by definition (3), the Laplacian L is

asymmetric; however, it can be shown easily that the eigen-
values {λi}i=1,2,3,··· ,N of L are real and non-negative, with the
smallest one being λ1 = 0 [21].

To analyze the dynamics (2), we work in the eigenbasis
of the asymmetric Laplacian L. If |vR

m〉 and 〈vL
m| be the right

and left eigenvectors corresponding to an eigenvalue λm, we
can represent a state given by the phases of the oscillators,
|θ〉 = (θ1, θ2, · · · , θN )ᵀ, in an eigenbasis as follows:

|θ〉 =
N∑

m=1

〈
vL

m

∣∣θ 〉∣∣vR
m

〉 =
N∑

m=1

θR
λm

∣∣vR
m

〉
, (4)

〈θ | =
N∑

m=1

〈
θ
∣∣vR

m

〉〈
vL

m

∣∣ =
N∑

m=1

θL
λm

〈
vL

m

∣∣, (5)

where xR
λm

:= 〈vL
m|x〉, and xL

λm
:= 〈x|vR

m〉. Similarly, a given
realization of the natural frequencies ({ωi}) can also be
represented by

|ω〉 =
N∑

m=1

ωR
λm

∣∣vR
m

〉
, 〈ω| =

N∑
m=1

ωL
λm

〈
vL

m

∣∣. (6)

Note that the Laplacian L is now diagonalizable by the modal
matrix P as follows:

P−1LP = D, (7)

where D is a diagonal matrix with elements being the eigen-
values of the Laplacian 0 = λ1 < λ2 � λ3, · · · ,� λN . By
construction, the right eigenvectors |vR

m〉 form the columns of
P, whereas the left eigenvectors 〈vL

m| form the rows of P−1.
These two sets of eigenvectors form a complete basis, are
dual to each other, and can be normalized as 〈vL

m|vR
m′ 〉 = δm,m′ .

Moreover, normalization of the eigenvectors guarantees that
P−1P = PP−1 = I.

A. Observables: Phase fluctuations and phase correlations

We compute two observables, namely, the average fluctu-
ation of the phases and the phase correlation over the entire
network, as proposed in Refs. [21,48], to characterize the
stability of the synchronized/ordered phase. The phase fluc-
tuation is defined by

W 2 = 1

N

〈
N∑

i=1

[θi − θ ]2

〉
= 〈θ2 − θ

2〉, (8)

where θ := (1/N )
∑N

i=1 θi, θ2 := (1/N )
∑N

i=1 θ2
i are the spa-

tial averages, and 〈·〉 denotes the average over realizations.
We now express these spatial averages in the eigenbasis
coefficients θL,R

λ .
We denote θi =〈i|θ〉, where |i〉= (0, · · · , 0, i, 0, · · · , 0)ᵀN .

We thus have

θ = 1

N

N∑
i=1

θi = 1

N

N∑
i=1

〈i|θ〉 = 1

N

N∑
i=1

N∑
m=1

θR
λm

〈
i
∣∣vR

m

〉

= 1

N
θR
λ1

N∑
i=1

〈
i
∣∣vR

1

〉 + 1

N

N∑
m=2

θR
λm

N∑
i=1

〈
i
∣∣vR

m

〉
. (9)
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Similarly, we can express the average phase in the left
eigenbasis and obtain

θ = 1

N

N∑
i=1

〈θ |i〉 = 1

N

N∑
m=1

θL
λm

N∑
i=1

〈
vL

m

∣∣i〉

= 1

N
θL
λ1

N∑
i=1

〈
vL

1

∣∣i〉 + 1

N

N∑
m=2

θL
λm

N∑
i=1

〈
vL

m

∣∣i〉. (10)

Next we will derive a few properties of the Laplacian L
to simplify the above averages. The fact that

∑N
j=1 L| j〉 = 0,

implies

∣∣vR
1

〉 =
N∑

i=1

|i〉, corresponding to λ1 = 0. (11)

Consequently,

N∑
i=1

〈
vL

m

∣∣i〉 = 0, ∀m �= 1. (12)

This result can also be understood from the elementary the-
ory of random walks [49] on a network, where the Laplacian
Lᵀ of Eq. (3) is the master operator or generator of the walk
on the network.

Assuming this process to be ergodic, it has a unique sta-
tionary state which is given by |vR

1 〉 corresponding to λ1 = 0.
One can also show that the 〈vL

m| and |vR
m〉 of L are related

through ∣∣vL
m

〉 = K
∣∣vR

m

〉
, (13)

where K = diag.(κ1, · · · , κN ). It readily follows from
Eqs. (11) and (13) that

〈
vL

1

∣∣ = 1

〈κ〉N
N∑

i=1

〈i|κi, (14)

so that the orthogonality condition of the eigenvectors is sat-
isfied. Here, 〈κ〉 = (1/N )

∑N
i=1 κi. Using Eqs. (11), (12) and

(14), one obtains from Eqs. (9) and (10), respectively,

θ = θR
λ1

+ 1

N

N∑
m=2

θR
λm

N∑
i=1

〈
i
∣∣vR

m

〉
and θ = 1

N
θL
λ1

. (15)

When averaged over ensembles, we have

〈θ2〉 = 1

N

〈
θL
λ1

θR
λ1

〉 + 1

N2

〈
N∑

m=2

θL
λ1

θR
λm

N∑
i=1

〈
i
∣∣vR

m

〉〉
. (16)

The second term on the right-hand side of Eq. (16) will
vanish at long times, which can be understood as follows:
For any dynamics of type (2), where ωi’s act as stochastic
force, be it quenched (e.g.,when they act as natural frequen-
cies in the Kuramoto model) or annealed (e.g., when they
represent Gaussian white noise), the evolution equations for
θ

L/R
λm

become decoupled in the eigenbasis of L. The θ
L/R
λm

can

be thought of as velocities of Brownian particles with ω
L/R
λm

being stochastic force and Kλm plays the role of damping
constant; see the Appendix. Thus, at long times, i.e., t → ∞,
the ensemble average 〈θL/R

λm
〉 will decay to zero for each m,

except for m = 1 for which λ1 = 0, so long as the ensemble
average of the stochastic force is zero, i.e., 〈ωL/R

λm
〉 = 0. Thus,

in the limit t → ∞, we have from Eq. (16),

〈θ2〉 = 1

N

〈
θL
λ1

θR
λ1

〉
. (17)

Now, the average squared phase, when expressed in the
eigenbasis

θ2 = 1

N

N∑
i=1

θ2
i = 1

N
〈θ |θ〉 = 1

N

N∑
m=1

N∑
m′=1

θL
λm

θR
λm′

〈
vL

m

∣∣vR
m′

〉

= 1

N

N∑
m=1

θL
λm

θR
λm

. (18)

We are interested in the phase fluctuations in the stationary
state attained at long times. Thus, Eq. (8), on using Eqs. (17)
and (18), yields for the phase fluctuations in the stationary
state,

W 2 = 〈θ2 − θ
2〉 = 1

N

〈
N∑

m=2

θL
λm

θR
λm

〉
= 1

N

N∑
m=2

〈
θL
λm

θR
λm

〉
. (19)

In the continuum limit, Eq. (19) can be expressed as

W 2 =
∫ λmax

λ2

dλ ρ(λ)
〈
θL
λ θR

λ

〉
, (20)

where ρ(λ) is the density of eigenvalues of the Laplacian L,
λ2 denotes the first nonzero (Fiedler) eigenvalue. The quantity

〈
θL
λ θR

λ

〉 =
∫ +∞

−∞

∫ +∞

−∞
dθL

λ dθR
λ θL

λ θR
λ Pst

(
θL
λ , θR

λ

)
, (21)

where Pst (θL
λ , θR

λ ) is the stationary joint probability distribu-
tion of θL

λ and θR
λ .

We now compute another important quantity, the phase
correlation defined by [21]

C = 1

N
〈〈θ |Lθ〉〉, (22)

where the outer brackets 〈·〉 denote again the average over
realizations. Expressing it in eigenbasis we obtain

C = 1

N

〈
N∑

m=1

λm
〈
θ
∣∣vR

m

〉〈
vL

m

∣∣θ 〉〉 = 1

N

〈
N∑

m=1

λmθL
λm

θR
λm

〉

= 1

N

〈
N∑

m=2

λmθL
λm

θR
λm

〉
= 1

N

N∑
m=2

λm
〈
θL
λm

θR
λm

〉
, (23)

as λ1 = 0. Thus at long times, in the continuum limit,

C =
∫ λmax

λ2

dλ λρ(λ)
〈
θL
λ θR

λ

〉
. (24)

Note that the above expressions, given by Eqs. (20)
and (24), are very general in the sense that they follow im-
mediately from unique stationarity of the dynamics on the
network. Thus, it holds for any dynamics occurring on the
network so long as it reaches a unique stationary state.

Now, in a general network or disordered system, the den-
sity of low-lying eigenvalues ρ(λ) of the network Laplacian

014208-5



SARKAR, ENSS, AND DEFENU PHYSICAL REVIEW B 110, 014208 (2024)

follows the scaling [10]

ρ(λ) ∼ λds/2−1 for λ � 1, (25)

where ds is the spectral dimension of the network. Further-
more, the smallest nonzero eigenvalue λ2 follows the scaling
with the network size N as

λ2 ∝ N−2/ds . (26)

Equations (25) and (26) would help us express the quantities
of interest as a function of the spectral dimension ds.

In the following, we now proceed to compute the quantities
W 2 and C explicitly for the Kuramoto and XY models, in
order to estimate the lower critical dimension of the associated
transitions.

B. Theoretical prediction for the Kuramoto model

In this section, we explicitly compute W 2 and C for the
Kuramoto model and study their behavior with system size N ,
which in turn helps to estimate the lower critical dimension
of the associated transitions. To start with, we first project
the linearized Kuramoto dynamics (2) along the eigenbasis
and obtain evolution equations for θ

L/R
λ . One can then ob-

tain Pst (θL
λ , θR

λ ) by using the Fokker-Planck formalism, and
substitute it in Eq. (21) to compute 〈θL

λ θR
λ 〉. However, we

compute 〈θL
λ θR

λ 〉 directly using formal solutions as sketched
in the Appendix. We have in the stationary state

〈
θL
λ θR

λ

〉 = 1

K2λ2
, (27)

which is substituted in Eq. (20) to arrive at

W 2 =
∫ λmax

λ2

dλ
ρ(λ)

K2λ2
. (28)

Note that Eq. (20) and thus Eq. (28) was obtained in Ref. [21]
from the explicit solution of the linearized Kuramoto model.
However, since we have shown the generality of this equa-
tion in the previous section, we directly use it here to obtain
the fluctuations.

Further, using Eqs. (25) and (26), we finally obtain

W 2 ∼
⎧⎨
⎩

N4/ds−1, ds < 4,

ln N ds = 4,

const. ds > 4.

(29)

A stable synchronized phase requires the average phase
fluctuations in the stationary state to be finite in the ther-
modynamic limit, i.e., W 2 < ∞ as N → ∞; otherwise, it
becomes thermodynamically unstable. Thus, it immediately
follows from Eq. (29) that the lower critical dimension for
the phase synchronization transition in the Kuramoto model
is ds = 4.

On the other hand, using Eq. (27) we obtain from Eq. (24)
for the stationary-state phase correlations

C =
∫ λmax

λ2

dλ
ρ(λ)

K2λ
, (30)

yielding

C ∼
⎧⎨
⎩

N2/ds−1, ds < 2,

ln N ds = 2,

const. ds > 2.

(31)

The correlation function C essentially represents the
mean-square phase difference between the nearest-neighbor
oscillators in the network. Thus, a divergence in C implies
that the average nearest-neighbor phase difference diverges,
which contradicts the very assumption of the linear theory. In
other words, the linear approximation becomes invalid in this
case.

The correlation C provides useful information about the en-
trainment dynamics. Physically, an entrained phase is possible
so long as the average nearest-neighbor phase difference is
small, i.e., the linear theory is valid. Thus, the possibility of
an entrained phase arises from the finiteness of C. Based on
this, it follows from Eq. (31) that entrainment in the Kuramoto
model is possible only if the spectral dimension ds > 2.

C. Theoretical prediction for the XY model

In this section, we study the system-size behavior of W 2

and C for the dynamics of classical XY model; see Sec. VI for
model definition and detailed discussion on the XY model.
Following a similar approach as for the Kuramoto model, for
the linearized dynamics of the XY model projected onto the
eigenbasis, one arrives in the stationary state〈

θL
λ θR

λ

〉 = T

Kλ
. (32)

A detailed derivation is provided in the Appendix.
On substituting Eq. (32) into Eq. (20), we obtain the phase

fluctuations of the XY model as

W 2 =
∫ λmax

λ2

dλ ρ(λ)
T

Kλ
. (33)

Using Eqs. (25) and (26), one obtains from Eq. (33) for the
stationary-state fluctuations

W 2 ∼
⎧⎨
⎩

N2/ds−1, ds < 2,

ln N ds = 2,

const. ds > 2.

(34)

Note that the functional dependence of W 2 for the XY model
and C of the Kuramoto model on the eigenvalue spectra of the
associated network is the same. Based on the discussion in
the previous section, it follows from Eq. (34) that a thermody-
namically stable ordered phase is possible only in ds > 2, and
the marginal case ds = 2 marks the lower critical dimension.

The correlation in the XY model,

C =
∫ λmax

λ2

dλ ρ(λ)
T

K
= T

K
, (35)

is a constant for any T, K > 0 and ds < ∞. It implies that
the linear theory is always valid. This can be understood
physically as follows: Since the XY spins are equivalent to
Kuramoto oscillators with identical natural frequencies, the
fluctuation in the phase velocity is always zero, thereby they
are inherently always entrained. This is why only the phase
transition is discussed in the context of the XY model. The
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behavior of C obtained in Eq. (35) is thus consistent with the
expected properties of the XY model.

Note that the linear theory never suggests the existence
of a phase or entrainment transitions in any ds, for any
temperature T , or coupling strength K . It only states that
if an ordered/synchronized state is possible, whether this
state would be stable or not. A disordered/unentrained phase
emerges and hence, a phase transition actually occurs due
to the nonlinearity present in the dynamics. In the following
section, we therefore study the nonlinear system numerically
and test our theoretical prediction for both the Kuramoto and
XY models to understand the role of spectral dimension and
network disorder in them.

Further, in numerics we tune the network parameter σ to
realize various spectral dimensions ds. The relation between
σ and ds for our network is nontrivial. It is given by ds =
2/σ and ds = 1 for small σ (σ < 1/3) and large σ (σ > 2),
respectively, in agreement with that of the fully connected
1D weighted graph, where the weight factor between two
sites (i, j) is ∼d−(1+σ )

i j with di j being the Euclidean short-
est distance between the sites (i, j) on the graph. For the
intermediate values of σ , one needs to numerically compute
ds from finite-size scaling of low-lying eigenvalues of the
graph Laplacian. The dimensions ds = 4 and 2 correspond to
approximately σ = 0.5 and 0.875, respectively; see Ref. [11]
and Fig. 4.

IV. NUMERICAL STUDY: OBSERVABLES

We are interested in studying two types of synchroniza-
tions: phase synchronization and frequency entrainment. The
various statistical quantities that we measure in our study are
as follows:

A. Order parameter

To measure frequency entrainment, we introduce the
Edwards-Anderson (EA) order parameter, defined as [50]

rEAeiψEA ≡ lim
T →∞

1

N

N∑
j=1

ei[θ j (t0+T )−θ j (t0 )], (36)

where t0 is the time larger than the initial transient time so that
the dynamics settles down into a stationary state. The quan-
tity rEA (0 � rEA � 1) measures the amount of entrainment
present in the system; rEA = 1 corresponds to a fully entrained
phase, whereas rEA = 0 corresponds to an unentrained phase.
Note that by entrainment, we mean the oscillators’ stationary-
state long-time average of the frequencies to be the same but
not necessarily their instantaneous frequencies.

To study the phase synchronization, let us also introduce
the Kuramoto synchronization order parameter [12,13]

r(t )eiψ (t ) ≡ 1

N

N∑
j=1

eiθ j (t ), (37)

where the quantity r (0 � r � 1) measures the amount of
global phase synchrony present in the system at a given instant
in time t , while ψ ∈ [0, 2π ) measures the average phase at
that instant [13].

B. Dynamic fluctuations

We study the behavior of the stationary-state fluctuations
of the frequency order parameter by measuring the quantity

χ = N
[〈r2

EA〉 − 〈rEA〉2
]
. (38)

In our simulations, to compute the frequency order parameter
for a given realization of the dynamics, we first evolve the
dynamics until it reaches a stationary state, signaled by a
stationary distribution of the phase order parameter. In the
stationary state, we choose time intervals of varying lengths
Tn = T + n�T , with T = 500, �T = 10, and n running from
0, 1, 2, · · · , 199, to construct a distribution of the EA order
parameter, the mean of which yields the time-averaged EA
order parameter. The quantity thus computed is further aver-
aged over many such realizations of the network and natural
frequencies of the oscillators (sample average). Here, 〈·〉 and
[·] represent the time average in the stationary state and sam-
ple averages, respectively. This quantity is equivalent to the
susceptibility in statistical systems. We note that in computing
the time average, it is advisable to choose nonoverlapping
time intervals when constructing the distribution in order to
eliminate any statistical correlations in the data. Clearly, this
approach is computationally very expensive. However, once
averaged over a long total time, we have observed that both of
these schemes yield qualitatively similar behavior.

A similar quantity for the stationary-state fluctuations of
the phase order parameter is measured as follows:

χ = N[〈r2〉 − 〈r〉2]. (39)

Here, to compute the time-average value for a given realiza-
tion of the dynamics, unlike in the previous case, one records
only the values of phase order parameter at various time
instants in the stationary state.

C. Binder cumulant

To understand the existence as well as the nature of a
phase transition, we consider another useful thermodynamic
quantity, namely, the fourth-order Binder cumulant, defined
on system of size N by [51,52]

U = 1 −
[ 〈r4〉

3〈r2〉2

]
, (40)

where 〈·〉 and [·] represent the time average in the stationary
state and the sample average, respectively. We replace r in
Eq. (40) by rEA to study frequency entrainment dynamics.

Our analysis is based on the finite-size scaling (FSS) hy-
pothesis and we further assume that this scaling holds also for
continuous transitions in a nonequilibrium system, in particu-
lar for a large network in the limit N → ∞ [52–57]. Similar
to an equilibrium system, we assume that, except at criticality,
the two-point connected correlation between two oscillator
phases at i and j to behave exponentially ∼ exp (−|i − j|/ξ )
in both the ordered (entrained/synchronized) and disordered
(unentrained/unsynchronized) phases, where |i − j| is the
separation between the two oscillators as defined earlier, and ξ

is called the correlation length. A continuous phase transition
is characterized by a divergence of correlation length ξ at
criticality, and finite otherwise.
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FIG. 1. Entrainment in Kuramoto dynamics: Stationary-state Edwards-Anderson order parameter rEA (a)–(d), dynamical fluctuations χ

(e)–(h), and Binder cumulant U (i)–(l) as a function of coupling strength K for 4 different σ values: σ = 0.2 [(a), (e), (i)], 0.4 [(b), (f), (j)],
0.6 [(c), (g), (k)] and 0.8 [(d), (h), (l)]. Data in each panel are obtained in the nonequilibrium stationary state by integrating the dynamics (1)
on networks of sizes N = 128, 256, 512, 1024, 2048, and 4096 as indicated in the legend and averaged over 50 different realizations of the
network and intrinsic frequencies of the oscillators.

Following the FSS hypothesis, for large but finite N , the
correlation length ξ � N remains limited in both ordered and
disordered phases (away from criticality). Consequently, U
converges to the asymptotic value 2/3 in the ordered phase
and 1/3 in the disordered phase. At criticality, the finite sys-
tem size (N) will cut off long-distance correlations, and hence,
one would expect finite-size rounding off of critical-point
singularities, implying ξ ∼ N . The system is now expected
to remain close to another fixed-point value U ∗, independent
of N . So, a feature of a continuous transition is hinted at by
the existence of a common intersection point of the curves for
U vs the relevant coupling or noise strength for a network of
various sizes N . The common intersection point corresponds
to the critical parameter value of the transition at which fluc-
tuation diverges in the thermodynamic limit and ξ → ∞.

However, in practice, due to statistical uncertainties, in-
stead of a common intersection point, the curves may cross
each other within a range of parameter values. To estimate
the “true” critical parameter, one then needs to study a large
system size, perform sample averaging and take into account
finite-size effects. However, in our present work, our aim is
not to estimate the critical point, but to investigate the very
existence of a transition, if any. Data of numerical results
reported in Secs. V and VI are obtained by numerically in-
tegrating the corresponding deterministic (Kuramoto model)
and stochastic (XY model) governing dynamics employing
the Runge-Kutta4 and Euler-Maruyama algorithm respec-
tively, with integration time step dt = 0.01.

V. RESULTS: UNIVERSALITY OF PHASE
AND ENTRAINMENT TRANSITION

A. Frequency entrainment transition

With the observables mentioned above, we now proceed
to study the entrainment dynamics in the Kuramoto model
on networks of various spectral dimensions. Figure 1 shows
the behavior of the stationary-state EA order parameter rEA

[Figs. 1(a)–1(d)], dynamical fluctuations χ [ Figs. 1(e)–1(h)],
and Binder cumulant U [Figs. 1(i)–1(l)] as a function of cou-
pling strength K for various σ values on networks of various
sizes N .

For all σ values [Figs. 1(a)–1(d)], the EA order param-
eter increases from small values O(1/

√
N ) to large values

O(1). However, to investigate whether these unambiguously
correspond to an entrainment transition in the thermody-
namic limit, we study the behavior of dynamical fluctuations
[Figs. 1(e)–1(h)] and Binder cumulant U [Figs. 1(i)–1(l)].
The divergence in χ at criticality in the thermodynamic limit
is reflected in finite systems as a peak in the fluctuation
curve, which is rounded at finite size. We further expect χ

to be O(1) both in the ordered and disordered phase, in a
region away from criticality. We call the parameter value at
which the peak occurs a pseudocritical point. A few com-
ments on the Figs. 1(e)–1(h) are in order: first, the peak
height of χ increases with N ; second, the fluctuation curves
look asymmetric around their maxima, and thus they are ex-
pected to yield two different values of the critical exponent
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FIG. 2. Phase synchronization in Kuramoto dynamics: Stationary-state Kuramoto order parameter (a)–(d), dynamical fluctuations χ

(e)–(h), and Binder cumulant U (i)–(l) as a function of coupling strength K for four different σ -values, namely, σ = 0.2 [(a), (e), (i)], 0.4
[(b), (f), (j)], 0.5 [(c), (g), (k)] and 0.6 [(d), (h), (l)]. Data in each panel are obtained in the nonequilibrium stationary state by integrating
the dynamics (1) on networks of sizes N = 128, 256, 512, 1024, 2048, and 4096 as indicated in the legend and averaged over 50 different
realizations of the network and intrinsic frequencies of the oscillators.

corresponding to either side of the transition. This may be due
to the heterogeneity present in our system: in our model, each
oscillator experiences a different field due to its own intrinsic
frequency and different degree. Thus, the usual renormaliza-
tion group argument for equal exponents above and below the
transition based on a few relevant variables may not work in
such a case. Third, the fluctuation curves around the peak in
the region of high K values become steeper as N increases. All
these observations hint towards the existence of a transition.

At this point, a close scrutiny shows something very inter-
esting. One expects, in general, the fluctuation curves around
the peak in the region of high K value to be steeper as
N increases, which implies diverging fluctuations only at
the critical point and zero fluctuations away from critical-
ity in the thermodynamic limit. This is indeed observed in
Figs. l(e)–1(f), which correspond to σ = 0.2 and 0.4, or
equivalently, ds = 10 and 5. These bear a clear signature of
an entrainment transition in the limit N → ∞, as expected.
However, for σ � 0.6 or ds � 3.33 the behavior changes, see
Figs. 1(g)–1(h) for σ = 0.6 and 0.8, or equivalently, ds ≈ 3.3
and 2.5. The curves broaden and imply large fluctuations that
increase with N even for very large K away from pseudocrit-
icality; this precludes the existence of an ordered/entrained
phase at high K in the thermodynamic limit. This shows
that there is no entrained phase, and hence no entrainment-
unentrainment transition for σ � 0.6, or ds � 3.33.

To confirm this observation, we further look at the behavior
of the Binder cumulant U [see Figs. 1(i)–1(l)] as a function of

coupling strength K for the same σ values. As observed in
Fig. 1(i), the curves for various N intersect within a certain
range of K ; also in Fig. 1(j), the behavior of U for the two
largest networks N = 2048 and 4096 shows an intersection
in U for large K that indicates an entrainment transition.
Qualitatively different behavior is seen in Figs. 1(k) and 1(l),
i.e., for ds � 3.33, where the curves for different N do not
intersect. This validates our observation, as obtained from the
study of dynamic fluctuations.

We note that linear theory predicts the lower critical di-
mension of the entrainment transition as ds = 2, given that the
correlation does not diverge. Here, we observe the absence of
entrainment even in dimensions (ds � 3.33) higher than the
critical one. We believe this happens because of an enhanced
fluctuations arising from the nontrivial interplay between
the quenched network disorder and the quenched frequency
disorder, besides the nonlinearity in the dynamics, suppress-
ing the entrained phase predicted from linear theory in this
region.

B. Phase synchronization transition

In this section, we study the phase synchronization dy-
namics of the Kuramoto model on our network of various
spectral dimensions and investigate the critical dimension to
observe the phase transition. Figure 2 shows the behavior of
the stationary-state Kuramoto order parameter r [Figs. 2(a)–
2(d)], dynamical fluctuations χ [Figs. 2(e)–2(h)], and Binder
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cumulant U [Figs. 2(i)–2(l)] as a function of coupling strength
K for various σ values on networks of various sizes N .

Similar to the entrainment case, for all σ values
[Figs. 2(a)–2(d)], the Kuramoto order parameter also in-
creases from small values O(1/

√
N ) to large values O(1). The

behavior of the dynamic fluctuations of the Kuramoto order
parameter for σ = 0.2 and 0.4, or, equivalently, ds = 10 and
5 [Figs. 2(e) and 2(f)] shows the existence of a phase synchro-
nization transition in the limit N → ∞. The case for σ = 0.5,
which corresponds to ds = 4 [Fig. 2(g)], is the marginal case
as predicted from the linear theory; furthermore, Fig. 2(h)
shows the behavior at σ = 0.6, or ds ≈ 3.33. In the latter two
cases, the peaks of the fluctuation curves start to broaden for
larger system size N in the region of high K , and thus imply
large fluctuations in the thermodynamic limit. Thus, in the
region σ � 0.5 (ds � 4), the broadening of the peak supports
having no synchronized phase at any high K , and thus no
phase synchronization-desynchronization transition.

This observation is further confirmed from the behavior
of the Binder cumulant U [Figs. 2(i)–2(l)] as a function of
coupling strength K : the curves for various sizes N cross
in Figs. 2(i) and 2(j), which corresponds to ds = 10 and 5,
respectively. However, having no common intersection point
among the various curves of U in Figs. 2(k) and 2(l) bears
a clear signature of no phase synchronization transition for
σ � 0.5, i.e. ds � 4.

Our observation of the lower critical dimension of the
phase synchronization transition is thus consistent with the
prediction of linear theory in that the transition occurs only in
ds > 4. One may thus conclude that the network disorder does
not affect the critical dynamics of the phase synchronization
transition.

VI. XY MODEL LIMIT: UNIVERSALITY OF PHASE
AND BKT TRANSITIONS

So far, our study focuses on the role of network disorder
on the emergent dynamics of a nonequilibrium system. At
this point, we feel it worthwhile to explore its effect on the
equilibrium dynamics. To this end, we consider the XY model
limit of the dynamics (1). Note that network disorder in our
study eventually renders the XY dynamics of a nonequilibrium
nature. As already predicted by the linear theory, the lower
critical dimension for a phase transition in the XY model on a
general network is dl

s = 2. In this section, we aim to verify the
universality of this phenomenon. The XY model is obtained
from the usual Kuramoto model when the intrinsic frequen-
cies of the oscillators are chosen to be identical, and moreover
set to zero, and then subject to Gaussian white noise [18,19].
The phase evolution Eq. (1), in this limit, now reads as

dθi

dt
= K

κi

N∑
j=1

ai j sin(θ j − θi ) + ηi(t ), (41)

where the term ηi(t ) is a Gaussian white noise characterized
by

〈ηi(t )〉 = 0 and 〈ηi(t )η j (t
′)〉 = 2T δi jδ(t − t ′). (42)

Here 〈·〉 denotes averaging over noise realizations, and T is the
noise strength proportional to the temperature of the system.

One may view the system of identical oscillators to be in
contact with a heat bath which is at a temperature T . To show
the explicit T dependence, one could write Eq. (41) as

dθi

dt
= K

κi

N∑
j=1

ai j sin(θ j − θi ) +
√

2T ζi(t ), (43)

with

〈ζi(t )〉 = 0 and 〈ζi(t )ζ j (t
′)〉 = δi jδ(t − t ′). (44)

For K �= 0 the equation of motion (43) can be brought
into dimensionless form by the transformation t → Kt , g →√

2T/K and ζi(t ) → ζi(t )/K ,

dθi

dt
= 1

κi

N∑
j=1

ai j sin(θ j − θi ) + gζi(t ). (45)

The dynamics relaxes at long times to a nonequilibrium sta-
tionary state. The Kuramoto phase-order parameter r is now
equivalent to the magnetization in a spin model of statistical
physics. Note that, for convenience, all numerical results in
this section are presented as a function of the reduced noise
strength g that depends on the temperature T as g = √

2T/K .
However, we use both the terms reduced noise strength and
temperature interchangeably throughout the text.

A. Phase transition

To study the phase transition, similar analysis of the vari-
ous statistical quantities as in the previous sections is pursued,
and is shown in Fig. 3. The stationary-state phase order pa-
rameter [Figs. 3(a)–3(d)] shows a transition as temperature
increases in r value from O(1) to O(1/

√
N ) on finite networks

of size N . The behavior of the fluctuations, that the peak
height increases with N, and especially that the fluctuation
curves become steeper near pseudocriticality in the region of
the ordered phase, shows the existence of a phase transition
for σ = 0.1 and 0.5, i.e., ds = 20 and 4 [Figs. 3(e) and 3(f)].
However, as σ � 0.7, e.g., in Figs. 3(g) and 3(h) correspond-
ing to σ = 0.7 and σ = 0.8, or equivalently ds ≈ 3 and 2.5,
the maximum fluctuations appear to saturate with system size
N (see insets). Also, the curves broaden with increasing N
near their maxima in the region of the ordered phase, probably
caused by strong finite size effects that hinder the realization
of the ordered phase, whose existence has been proven in the
thermodynamic limit [20]. Further, we show the behavior of
the Binder cumulant U in Figs. 3(i)–3(l) for the same σ values.
The curves of U vs g for various N seem to intersect clearly
for σ = 0.1 and 0.5 [Figs. 3(i) and 3(j)], whereas for σ = 0.7
and 0.8 [Figs. 3(k) and 3(l)] their N-dependent behavior in
the region of the ordered phase does not show a clear intersec-
tion, consistent with our previous observation from dynamic
fluctuations. Thus, in the region σ � 0.7, i.e., ds � 3, we do
not obtain a clear signature of a phase transition. The missing
evidences for the ordered phase in ds � 3 ought to be the
result of the strong finite-size effects generated by disorder
as the model has been theoretically shown to magnetize in the
thermodynamic limit for all ds > 2 [20].
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FIG. 3. XY model: Stationary-state phase order parameter r (a)–(d), dynamical fluctuations χ (e)–(h), and Binder cumulant U (i)–(l) as a
function of noise strength g = √

2T/K for four different σ values, namely, σ = 0.1 [(a), (e), (i)], 0.5 [(b), (f), (j)], 0.7 [(c), (g), (k)] and 0.8
[(d), (h), (l)]. Data in each panel are obtained in the nonequilibrium stationary state by integrating the dynamics (45) on networks of sizes
N = 128, 256, 512, 1024, and 2048 as indicated in the legend and averaged over 50 different realizations of the network and noise.

B. Fate of the BKT transition

So far, our study focused on the existence of a conventional
phase transition on a network. This section is devoted to
studying the BKT transition on networks [41,42]. As stated
earlier, the Mermin-Wagner theorem states for an equilib-
rium system that a continuous symmetry cannot be broken
spontaneously at any finite temperatures in spatial dimen-
sions two or lower [43]. The 2D XY model exhibits an
unconventional phase transition, the BKT transition, between
a low-temperature quasiordered phase and high-temperature
disordered phase [41,42]. The quasi- long-range ordered
phase is characterized by an algebraic decay of correla-
tions (infinite correlation length and diverging susceptibility),
whereas the decay is exponential in the disordered phase. A
generalization of the Mermin-Wagner theorem is as follows:
No spontaneous breaking of continuous symmetry is possible
on a “recursive on the average” graph, i.e., on a graph with
“average spectral dimension” ds � 2. The continuous symme-
try models always have a broken symmetry phase at a finite
temperature on the “transient on the average” graph (ds > 2).
Note that this is consistent with our theoretical prediction for
the linear model.

Motivated by this, we ask if the XY dynamics on 1DLR3
network with ds = 2 shows a BKT transition. In order to real-
ize ds = 2 with our network, we numerically compute ds from
finite-size scaling of low-lying eigenvalues of the graph Lapla-
cian for various σ , which yields σ = 0.875 corresponding

to ds ≈ 2.03; see Fig. 4. The behavior of various statistical
quantities measured in the stationary state at this parameter
value is shown in Fig. 5.

Now, for a system exhibiting a BKT transition at critical
temperature TBKT, in the region T � TBKT, fluctuations di-
verge, and consequently the correlation length ξ (N → ∞) is
infinite. Thus, for large but finite N , one would expect the

0.84 0.86 0.88 0.90 0.92 0.94 0.96
σ

1.8

2.0

2.2

2.4

d
s

2/σ
1DLR3

FIG. 4. Spectral dimension ds as a function of σ of the 1DLR3
network as obtained by the finite-size scaling of the graph Laplacian
spectrum. The dashed blue line represents the analytical expectation
for a long-range weighted lattice.
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FIG. 5. BKT transition in XY model: Stationary-state phase order parameter r (a), dynamical fluctuations χ (b), and Binder cumulant U
(c) as a function of reduced noise strength g for σ = 0.875 that corresponds to ds ≈ 2.0. Data in each part are obtained in the nonequilibrium
stationary state by integrating the dynamics (45) on networks of sizes N = 128, 256, 512, 1024, 2048, and 4096 as indicated in the legend
and averaged over 50 different realizations of the network and noise.

fluctuations to scale with N at and below TBKT. Also, the
curves of U for various N are expected to stay close to a fixed
point U ∗ in this region. However, in practical application, due
to the statistical uncertainties, it is observed that TBKT is very
close to the point where the curves of U for various N begin
to separate from the low-T asymptotic value [58].

Figure 5(a) shows the behavior of the stationary order
parameter r as a function of noise strength g, which crosses
over from low-temperature high r-value to a high tempera-
ture low r-value, typical of finite-size rounding of a sharp
transition. However, as shown in Fig. 5(b), the fluctuations
in the low-temperature region do not seem to increase with
N (even the peak heights seem to get saturated) for high
values of N , showing no divergence in this region in the
thermodynamic limit. This is further confirmed by the be-
havior of the Binder cumulant U [Fig. 5(c)]: the curves of
U for various N do not seem to stay collapsed and then
begin to separate from a low-g asymptotic value, nor even
do they intersect clearly. This evidence speaks against a
BKT transition in disordered graphs with ds = 2; instead,
its behavior is similar to that observed for σ = 0.7 and 0.8
(ds > 2).

Based on these observations, we anticipate that the net-
work disorder plays a crucial role in 0.6 < σ < 0.875, or
approximately, in spectral dimension 2 � ds � 3. The struc-
tural heterogeneity due to the presence of the long-range links
acts as a source of quenched disorder. The lower critical di-
mension of the phase synchronization transition is ds = 4, and
in such high dimension the disorder fluctuation decreases with
system sizes very fast, and the system becomes asymptotically
homogeneous at large length scales, suppressing the fluctua-
tions. Thus, the critical behavior of the phase synchronization
transition in such disordered systems remains unaffected and
is identical to that of the clean system. In contrast, for both the
entrainment dynamics of the Kuramoto model and the phase
transition of the XY model, the lower critical dimension is
ds = 2. In 2 � ds � 3, we believe that such a weak disorder
makes the finite-size effects very strong, introducing enhanced
fluctuations that vanish extremely slowly in the thermody-
namic limit. Thus, the system remains inhomogeneous even
at large length scales (for the system sizes we considered),
making it extremely difficult to probe the existence of the
ordered phase predicted by the linear theory and also by

rigorous mathematical arguments [20]. However, a complete
confirmation of this calls for an independent study.

VII. CONCLUSION

In this work, we have systematically investigated the role
of spectral dimension ds as a control parameter in determin-
ing the universality of phase transitions on a network. As a
network, we employ a 1DLR3 graph on top of which we
study two paradigmatic models: One is the nonequilibrium
dynamics of the Kuramoto model of synchronization, and the
other one is the equilibrium dynamics of the classical XY
model. To summarize our findings,

(1) We have developed for a given dynamics occurring
on the network, under linear approximation, a general rela-
tionship between stationary-state properties of the dynamics
occurring on the network and the underlying network struc-
tures in terms of the density of eigenvalues of the network
Laplacian. Our method is general in that it applies to both
deterministic and stochastic dynamics on the network so long
as it has a unique stationary state.

(2) The linear theory predicts the lower critical spectral
dimension for the entrainment and synchronization transition
in the Kuramoto model as ds = 2 and ds = 4, respectively,
whereas, for the phase transition in the XY model, it yields
ds = 2.

(3) Our detailed numerical investigation agrees well with
the theoretical prediction of phase synchronization transition
in the Kuramoto model. However, it does not yield a clear
signature of entrainment transition in the Kuramoto model and
phase transition in the XY model in 2 � ds � 3.

Let us now briefly compare our results with that of the
clean counterparts of the dynamics under study, i.e., dynam-
ics on a d-dimensional periodic lattice with long-range (LR)
power-law interactions ∼|i − j|−(d+σ ), |i − j| being the sep-
aration between two sites on the lattice, as defined earlier.
The Kuramoto model with LR interactions on a 1D lattice
(d = 1) has been numerically studied previously [50,59,60].
Numerical simulations in Ref. [59] demonstrate that an en-
trainment transition is possible only when σ � σc = 1, which
implies a lower critical spectral dimension for an entrainment
transition of ds = 2. On the other hand, Ref. [61] provides
a rigorous mathematical proof on the existence of stable
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spontaneous magnetization at finite temperature in the 2D XY
model (d = 2) with LR interactions for σ < 2, suggesting
a lower critical spectral dimension for phase transition of
ds = 2. Thus, both clean systems, the LR Kuramoto and LR
XY models, indeed exhibit an entrainment and a continuous
transition, respectively, above ds = 2, thereby confirming our
expectations from linear theory. We emphasize that the only
difference between our work and Refs. [59,61] is the presence
of network disorder, which seems to have a crucial impact on
the emergent phenomena.

We thus anticipate that the quenched network disorder aris-
ing from the structural heterogeneity is harmless in spectral
dimension ds > 3 and the critical behavior in such disordered
systems is identical to that of the clean system. However, for
2 � ds � 3 the disorder average introduces finite-size scaling
contributions which vanish extremely slowly (possibly loga-
rithmically) in the thermodynamic limit, making it extremely
hard to probe the existence of the ordered phase predicted
by the linear theory as well as by rigorous mathematical
arguments [20]. Our next task would be to develop a rigorous
theory, such as a field-theoretic approach using a functional
renormalization group, to establish our findings. This further
includes computing the critical exponents of the associated
transitions and determining the universality classes. More-
over, given the role of network disorder near ds = 2, an
immediate question arises: How can one realize a BKT tran-
sition in the dynamics of XY model on such a disordered
system? A complete confirmation of such a nontrivial behav-
ior and an answer to the imposed query require an independent
study. Investigation in this direction is going on and will be
reported elsewhere.
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APPENDIX: LINEAR THEORY: DERIVATION
OF 〈θL

λ (t )θR
λ (t )〉

Here we present a detailed derivation of various quantities,
evolution equations in the new variables, for the linearized dy-
namics of both the Kuramoto and XY models. To analyze the
dynamics (2), as mentioned in the main text, we work in the
eigenbasis of the asymmetric Laplacian L. If |vR

m〉 and 〈vL
m| are

the right and left eigenvectors, respectively, corresponding to
an eigenvalue λm, we can represent a state, given by the phases
of the oscillators, |θ〉 = (θ1, θ2, · · · , θL )ᵀ in an eigenbasis as
follows:

|θ〉 =
N∑

m=1

〈
vL

m

∣∣θ 〉∣∣vR
m

〉 =
N∑

m=1

θR
λm

∣∣vR
m

〉
, (A1)

〈θ | =
N∑

m=1

〈
θ
∣∣vR

m

〉〈
vL

m

∣∣ =
N∑

m=1

θL
λm

〈
vL

m

∣∣. (A2)

Similarly, a given realization of the natural frequencies and
noise can also be represented by

|ω〉 =
N∑

m=1

ωR
λm

∣∣vR
m

〉
, |η〉 =

N∑
m=1

ηR
λm

∣∣vR
m

〉
, (A3)

〈ω| =
N∑

m=1

ωL
λm

〈
vL

m

∣∣, 〈η| =
N∑

m=1

ηL
λm

〈
vL

m

∣∣. (A4)

1. Derivation of 〈θL
λ (t )θR

λ (t )〉 for the Kuramoto model

We obtain from the linearized Kuramoto dynamics Eq. (2),
when projected along the eigenbasis,

dθR
λm

dt
= −KλmθR

λm
+ ωR

λm
,

dθL
λm

dt
= −KλmθL

λm
+ ωL

λm
, m = 1, 2, 3, · · · , N, (A5)

whereas the frequency ωL,R
λm

satisfies〈
ωL,R

λm

〉 = 0,〈
ωL

λm
ωR

λm′

〉 = δλm,λm′ . (A6)

Note that the frequencies ωL,R
λm

for a given λm are δ-correlated.
The dynamics gets decoupled in the eigenbasis and and we
obtain N independent first-order stochastic differential equa-
tions. From now on, we use ωL,R

λ instead of ωL,R
λm

for notational
convenience. The solution to Eq. (A5) is given by, for λ > 0,

θ
L/R
λ (t ) = θ

L/R
λ (0) e−Kλt + ω

L/R
λ

Kλ
(1 − e−Kλt ). (A7)

Thus we have〈
θL
λ (t )θR

λ (t )
〉 = θL

λ (0)θR
λ (0) e−2Kλt

+ 1

K2λ2
(1 − e−Kλt )2

〈
ωL

λωR
λ

〉
, (A8)

= θL
λ (0)θR

λ (0) e−2Kλt + 1

K2λ2
(1 − e−Kλt )2.

(A9)

At long times (t → ∞), it reduces to

〈
θL
λ (t )θR

λ (t )
〉 = 1

K2λ2
. (A10)

Equation (A10) is provided in the main text. Note that this
result is already provided in Ref. [21]. However, we give the
derivation here in order to make our manuscript self-contained
and we generalize this to the case of Gaussian white noise in
the next section.

2. Derivation of 〈θL
λ (t )θR

λ (t )〉 for the XY model

The governing dynamics (41), once projected along the
eigenbasis, yields

dθR
λm

dt
= −KλmθR

λm
+ ηR

λm
,

dθL
λm

dt
= −KλmθL

λm
+ ηL

λm
, m = 1, 2, 3, · · · , N, (A11)
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whereas, the noise ηL,R
λm

(t ) can easily be shown to follow〈
ηL,R

λm
(t )

〉 = 0,〈
ηL

λm
(t )ηR

λm′ (t
′)
〉 = 2T δλm,λm′ δ(t − t ′). (A12)

Here, as well, the noise ηL,R
λm

(t ) for a given λm are δ-
correlated, and the dynamics get decoupled in the eigenbasis.
Using the notation ηL,R

λ instead of ηL,R
λm

, Eq. (A11) yields a
formal solution for λ > 0

θ
L/R
λ (t ) = θ

L/R
λ (0) e−Kλt + e−Kλt

∫ t

0
dt ′ ηL/R

λ (t ′) eKλt ′
.

(A13)

Note that Eq. (A13) implies for ensemble-averaged〈
θ

L/R
λ (t )

〉 = θ
L/R
λ (0) e−Kλt , (A14)

which vanishes as t → ∞.

One obtains for the quantity〈
θL
λ (t )θR

λ (t )
〉 = θL

λ (0)θR
λ (0) e−2Kλt

+ e−2Kλt
∫ t

0
dt ′

∫ t

0
dt ′′ 〈ηL

λ (t ′)ηR
λ (t ′′)

〉
eKλ(t ′+t ′′ ),

= θL
λ (0)θR

λ (0) e−2Kλt + 2Te−2Kλt
∫ t

0
dt ′ e2Kλt ′

,

= θL
λ (0)θR

λ (0) e−2Kλt + T

Kλ
(1 − e−2Kλt ),

(A15)

which yields in the long-time limit (t → ∞)

〈
θL
λ (t )θR

λ (t )
〉 = T

Kλ
. (A16)

Equation (A16) is provided in the main text.
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